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ABSTRACT

Three-dimensional reconstruction of medical images is increasingly being used to diagnose disease and to direct therapy.
Virtual bronchoscopy is a recently developed type of three-dimensional reconstruction of the airways that may be useful for
diagnosis of lesions of the airway.  In this study, we compare two methods for computer-aided diagnosis of polypoid airway
tumors: a parametric (“patch”) and non-parametric (“grey-scale”) algorithm.  We found that both methods have comparable
specificities. Although the non-parametric method is twelve times faster than the parametric method, we found that its
sensitivity lags behind that of the parametric method by 3 to 16% when lesions of all sizes are considered.  For lesions at
least 5 mm in size, the sensitivities are comparable if a small convolution kernel is used.
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1.  INTRODUCTION

Virtual bronchoscopy is a new method of displaying three-dimensional reconstructions of the central airways.  It produces
an endoscope-like display that has proved accurate for the assessment of stenoses and masses affecting the airways 1-4.

Curvature based segmentation methods have been previously applied to range images and medical imaging for
computer vision and object registration 5,6. We have tested two methods of image analysis based on curvature segmentation
to compare their usefulness for another application:  computer-assisted detection of endobronchial lesions on virtual
bronchoscopy studies.

We have previously reported on a patch-based method for automatic lesion detection 7.  That method, based on
parameterization of the airway surface, yielded high sensitivities and specificities for detecting lesions.  However, it had two
limitations:  it ran slowly and worked poorly in the smallest airways. Both of these limitations were a direct consequence of
the need to parameterize the surface using b-spline patches.  In this report we compare the patch-based method with a faster
nonparametric method based on computing curvatures directly from the grey-scale data.

2.  METHODS

Virtual bronchoscopy (VB) three-dimensional surface renderings of the central airways were generated from computed
tomography (CT) scans of the thorax in 7 patients with and 9 patients without endobronchial lesions 4,8.  A latex airway
phantom fitted with simulated endobronchial lesions was also scanned 9.  Automatic detection of the lesions was done using
two curvature-based techniques:  one which determined local curvature over small patches on the surface (hereinafter
referred to as the “patch” algorithm) and another which computed curvature from the underlying grey-scale data (the “grey-
scale” algorithm).  Each method uses the local curvature to detect the presence of a curvature signature characteristic of a
lesion and color encodes the surface at that location.  We performed quantitative analyses of these color-encoded surfaces in
order to determine the sensitivity and specificity of lesion detection for the two methods, using the original CT scan data as
the gold standard.  We also analyzed the color-encoded surfaces to ascertain qualitative differences between the two
methods.
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The CT images were first pre-processed using a seeded region-growing algorithm in order to identify the airways 4.
The region-growing algorithm identified a thin shell of voxels surrounding the lumen which were designated as the airway
wall.  A shell two voxels thick was used for the surface patch method to which a standard isosurface tessellation algorithm
was applied and an OpenInventor scene graph was produced 10,11.

For the patch method, the surface was first smoothed and then overlapping 5 mm bicubic parametric B-spline
patches were fit to each point of the surface using least squares 5,7,12-14.  The differential characteristics of the surface (i.e.,
its local curvature) at each vertex could then be computed from first and second order partial derivatives of the B-spline
patch 5,7,13-15.  These curvatures were then classified as elliptical, hyperbolic, or cylindrical curvature based on the signs of
the principal curvatures.  Potential polypoid lesions were designated as those having elliptical curvature of the peak subtype.
To reduce the number of false positive detections, a connectivity algorithm was applied to further refine the list of potential
lesion sites.

For the grey-scale method, 3D filters to compute partial derivatives of the image data were formed 16,17.  The size
of the 3D filters was set to approximately 5x5x5 mm3 with an adjustment made for the anisotropy of the 3D dataset. For
example, a kernel of size 11x11x11 voxels actually used an 11x11 voxel component in the plane of section (0.5 mm in-
plane voxel size) but along the longitudinal direction (1 mm section thickness) the kernel was only 5 voxels thick.  The
normalization coefficients of these filters were computed using discrete sums performed over the size of the kernel.  The
separable filters were then applied to the image I(x,y,z) using convolutions to compute smoothed partial derivatives.  These
partial derivatives were used to compute the Gaussian (K), mean (H), and principal curvatures (κMIN, κMAX) at each vertex
on the isosurface.  The curvature values were used to colorize the surface based on various selection criteria (type of
curvature, range of values, connectivity of neighboring vertices of like curvature classification).

For both methods of curvature computation, the following minimum criteria were used to classify a lesion:
curvature classification of the “peak” subtype and minimum lesion size 30 vertices (approximately 3 mm).  Three thresholds
(ε) for mean or maximum principal curvature were used: ε < 0, ε < -1, ε < -2.  The number of potential lesion sites meeting
these criteria were counted and were individually evaluated for plausibility using a multiple window 3D surface geometry
viewer and an airway navigation software tool 8,18. The color-encoded surfaces can also be evaluated with any VRML 1.0-
compliant viewer.  Processing and display were done on an Onyx2 Infinite Reality workstation (Silicon Graphics, Inc.)
having 512 MB main memory and using a single 195 MHz R10000 processor.

Sensitivity and specificity for each mean curvature threshold were reported on a per segment basis for statistical
purposes.  There were five airway segments:  trachea, right and left mainstem bronchus, and right and left lung lobar and
segmental bronchi.  Data for the patch method were reported elsewhere and are included here for comparison 19.

3.  RESULTS

Both methods detected all simulated endobronchial lesions at least 5 mm in size in the phantom (Figure 1 and Figure 2).
None of the simulated lesions smaller than 5 mm was detected with either method except for one case in which a 4 mm
lesion was detected (grey-scale method, 7x7x9 voxel kernel).

When lesions of all sizes were considered, the sensitivity of the patch method was better than that of the grey-scale
method although the specificities were similar (Table 1).  The sensitivity of the grey-scale method improved 5 - 16% using a
smaller kernel, with a similar specificity (Table 1 and Figure 3).  When only lesions at least 5 mm in size were considered,
the sensitivities improved up to 28% for the grey-scale method.

For the patient studies, the number of lesion detections found and subsequently discarded at sites of segmentation
leakage, end effects (an artifactual cap at the distal extent of a segmental airway), or artifacts from poor segmentation, was
approximately 25 per patient with the grey-scale method and 2 per patient with the patch method.

The grey-scale method was more computationally efficient, requiring only 9% of the processing time required by
the surface based method.  Per thousand triangles, isosurface generation took 0.2 sec, and curvature computation took 1.2
sec (grey-scale method, 11x11x11 kernel) or 13.5 sec (patch method).  For the grey-scale method, smaller kernels required



significantly less processing time.  For example, the 7x7x9 kernel executed at 0.5 sec per thousand triangles, over twice as
fast as the 11x11x11 kernel.

The type of curvature used was also important.  Using the mean curvature (H) with the grey-scale method, there
were two to three times as many lesion detections for ε < -1 and ε < -2 compared to processing which used the maximum
curvature (κMAX).

Qualitatively, the grey-scale method produced more visually appealing color-encoded surfaces because potential
lesions were painted more homogeneously. In addition, the grey-scale method combined smoothing, isosurface generation,
and lesion detection into one step whereas the surface based method required a series of steps.  The problem of
parameterizing the surface, often difficult or impossible in regions that were highly curved, is also avoided by using the
grey-scale data.  Also, the surface itself was not smoothed, so the model is closer to the actual data.  Characteristics of the
patch and grey-scale methods are compared and contrasted in Table 3.

4.  DISCUSSION

We found that the grey-scale method had slightly lower sensitivity than the patch method, even when a smaller kernel
which yielded better sensitivity was used. We believe the smaller kernel was advantageous because the larger kernel may
smooth the airway wall to a greater extent because of contributions of non-airway structures further from the airway wall.
We also note that the kernels have adjustable parameters (α in the 3D Deriche filters in Ref. 16) which affect the degree of
smoothing.

The grey-scale method was twelve times as fast as the patch method.  This is because parameterization of the
surface was computationally expensive.  However, both methods are amenable to parallelism and the number of
computations required are linear in the number of vertices in the airway surface.  The 3D filter kernel is fast because it only
needs to be applied at each vertex.  The convolution does not need to be applied to the entire dataset which would scale with
the size of the dataset.  Methods now exist for accelerating convolutions in special purpose hardware which could be used to
make the grey-scale method faster yet.  Use of a smaller kernel would make the grey-scale method over 24 times as fast as
the patch method, potentially increasing sensitivity at the same time.

Although the grey-scale method should work better than the patch method in smaller airways where the curvature
is greater, our results for the airway phantom showed little difference between the two methods although the grey-scale
method did detect one 4 mm lesion in the phantom which the patch method missed.  However, our choice of connected
component size (30 vertices) may have caused us to discard such detections.  The same limitation applied to our analysis of
the patient studies.  Further work will need to be done to determine if detection of lesions in the small airways can be
achieved without generation of a significant number of false positive detections.

These lesion detection methods could also be applied to virtual endoscopy systems which only render local
anatomy, for example those which do not try to generate the entire exoscopic view but only compute endoscopic views based
on the small range of structures visible at any one time during endoscopy.  Such systems have gained favor because they do
not require a difficult segmentation to be performed and they require less or no pre-processing.  For such an application, the
airway wall could be colorized and the presence of potential lesions indicated as the physician navigates the particular
segment of the hollow anatomic structure.  The system would be unable to indicate all potential lesions up front because no
global 3D anatomic model had been computed.

In this project, we used an anisotropic kernel to match the anisotropy of the dataset.  Another approach would be to
interpolate the grey-scale data in order to obtain an isotropic dataset.  If interpolation were done, the speed advantage of the
grey-scale method would be reduced somewhat.

These are preliminary data based on one rational choice of parameters.  However, as can be seen in Table 3, there
are a multitude of possible parameter choices, some combination of which may yield improved sensitivity and specificity for
lesion detection.

In conclusion, the grey-scale based lesion detection method is more computationally efficient, is amenable to
parallelism, and produces more pleasing displays without compromising specificity.  Its sensitivity is slightly lower



however, although sensitivity is improved by reducing the size of the kernel.  The significance of these methods is that they
may improve physician efficiency and accuracy in the detection of endobronchial lesions which protrude into the lumen.
They may also be applicable for detecting other endoluminal masses such as colonic polyps.
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 Table 1. Sensitivity and Specificity of Patch and Grey-scale Methods.

Patch Algorithm* Grey-scale Algorithm
11x11x11 Kernel

Grey-scale Algorithm
7x7x9 Kernel

ε Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

All Lesions
0 88% 58% 72% 63% 78% 64%
-1 88% 70% 67% 74% 72% 75%
-2 47% 89% 28% 88% 44% 83%

5 mm Lesions or Larger
0 100% 59% 100% 63% 100% 63%
-1 100% 77% 91% 73% 100% 75%
-2 64% 89% 27% 86% 55% 82%

Sensitivity and specificity are reported for 90 airway segments in 18 virtual
bronchoscopy patient examinations. ε is the threshold for mean curvature (cm-1).
*From Ref. 19.

Table 2.  Comparison of Patch and Grey-scale Methods

Characteristic Patch Method Grey-scale
Method

Comments

Relative speed Slow Fast Factor of 12 difference in computational
speed

Detected size (coverage)
of any given lesion

Larger for low
curvature lesions;
smaller for high
curvature lesions

Smaller for low
curvature lesions;

larger for high
curvature lesions

Smaller detected size can cause candidate
lesion to be falsely rejected based on size

criteria

Data requirements Only the surface Both the surface and
grey-scale data

5 MB vs. 50 - 100 MB

Amenable to parallelism Yes Yes Curvature at each vertex can be computed
independently of the others

Requires
parameterization

Yes No Parameterization may fail if patch is too
large in regions of high curvature

Behavior in smallest
airways

Algorithm fails; unable
to compute patch

(insufficient density of
vertices in regions of

high curvature)

Not a limitation Triangle splitting may be used to increase
density of vertices for patch method,

although computation time will increase
proportionately

Requires smoothing Yes; both surface and
curvatures  are

smoothed

Yes; derivatives
only are smoothed

Can result in loss of information and
decreased sensitivity, possibly to a greater

extent with patch method.  Original surface
is left intact with grey-scale method

Appearance  of
detected lesion

(uniformity of coverage)

Heterogeneous
(less uniform)

Homogeneous
(more uniform)

Homogeneous (more uniform) appearance
is more visually appealing

Depends on kernel size N/A Yes Detected lesion size can be dramatically
different  for  different  size  kernels

Likelihood of false
positive detections

within areas of
segmentation leakage

Less likely More likely Manual editing may be used to reduce
segmentation leakage although such editing
is time consuming and not yet amenable to

automation



Table 3.  Degrees of Freedom for Lesion Detection Algorithm

Parameter Possible choices Parameters we used
Curvature Type Gaussian (K), Mean (H), Principal (κMIN,

κMAX)
K, κMAX

Secondary and Derived curvatures -
see Ref. 20

metric determinant g , quadratic variation

Q, coordinate angle function Θ, magnitude of

principal curvature difference H 2 − K ,
HK-sign map

N/A

Filter settings for desirable curvature
values

Arbitrary Upper limit:  0, -1, or -2 cm-1

Lower limit: -20 cm-1

Kernel size+ Arbitrary 7x7x9, 9x9x9, 11x11x11
voxels (~3, 4, 5 mm in each
direction, resp.)

Connected component size (minimum
region size having homogeneous
curvature  classification)

Arbitrary 30 vertices (~3 mm diameter)

Patch size* Arbitrary 5 mm
+Applies to grey-scale method only.  *Applies to patch method only.

A.   B.

C.   D.

Figure 1. Virtual bronchoscopy of a latex phantom of the central airways. Simulated endobronchial lesions (spherical
beads) were affixed to the wall of the phantom.  Automatic lesion detection was done using patch (A, C) and grey-scale (B,
D) methods.  A, B.  View of two simulated lesions 10 and 5 mm in diameter (arrows) within a mainstem bronchus. (C, D)
View of a 5 mm diameter lesion (arrow) in the distal left lower lobe bronchus. For the grey-scale method, the kernel size
was 11x11x11. Note that margins of “lesions” in B and D are smoother and there are no areas of drop-out within the lesion
(indicating more homogeneous detection). For the 10 mm lesion, the detected region is larger using the patch method. For
the 5 mm lesion, the detected region is larger using the grey-scale method.  This is because the grey-scale method tends to
be less sensitive for areas of lower curvature and the patch method is less sensitive for areas of greater curvature.

10 mm

5 mm

5 mm
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Figure 2.  Multiple-window display (“image gallery”) showing twelve lesion detections in the airway phantom.  The center
window shows an “exoscopic” view of the phantom in A and B, and an endoscopic view in C.  Twelve candidate lesion sites
are shown in an array which frames the central window.  Each window represents a separate 3D display and the contents of
each window can be manipulated in 3D independently.  A. Opaque display.  The phantom is rendered opaque.  B.  Semi-
transparent display.  The phantom is rendered semi-transparent.  The individual lesions inside the phantom are visible.
Each lesion detection in the central window is identified with a number and arrow.  The number links the lesion to the
corresponding endoscopic view in the smaller window in the surrounding frame.  C.  Virtual bronchoscopy view of two
simulated endobronchial lesions.  The arrow in the central window which points at a lesion was positioned automatically by
the software.



A.

B .   C.   D.   E.

F .   G.   H.    I.

Figure 3.  Virtual bronchoscopy of the central airways of a 29 y.o. male patient with melanoma metastatic to the
mediastinum and right hilum. A.  Frontal exoscopic view of the mainstem carina, mainstem bronchi, and bronchus
intermedius. The mass compresses the bronchus intermedius and bifurcation of right middle and lower lobe bronchi
(arrows). Right anterior oblique exoscopic views (B-E) and virtual bronchoscopic views (F-I) of the compressed bronchus
intermedius. Automatically detected lesion sites are shown in a darker shade, as computed by patch method (B, F), and
grey-scale method (C-E, G-I).  For the grey-scale method, the kernel sizes were 11x11x11 (C, G), 9x9x9 (D, H), and 7x7x9
(E, I), voxels. In the virtual bronchoscopy, the viewpoint is within the bronchus intermedius looking distally towards right
lower lobe bronchus. Note that margins of “lesion” in E and I are slightly smoother and that inferior component of
bronchial narrowing is detected by grey-scale method only when a small kernel is used.


